
Simulating and Detecting Radiation-Induced Errors
for Onboard Machine Learning

Robert Granat, Kiri L. Wagstaff, Benjamin Bornstein, Benyang Tang, and Michael Turmon
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109-8099
Email: firstname.lastname@jpl.nasa.gov

Abstract—Spacecraft processors and memory are subjected to
high radiation doses and therefore employ radiation-hardened
components. However, these components are orders of magnitude
more expensive than typical desktop components, and they lag
years behind in terms of speed and size. We have integrated
algorithm-based fault tolerance (ABFT) methods into onboard
data analysis algorithms to detect radiation-induced errors,
which ultimately may permit the use of spacecraft memory
that need not be fully hardened, reducing cost and increasing
capability at the same time. We have also developed a lightweight
software radiation simulator, BITFLIPS, that permits evaluation
of error detection strategies in a controlled fashion, including
the specification of the radiation rate and selective exposure of
individual data structures. Using BITFLIPS, we evaluated our
error detection methods when using a support vector machine
to analyze data collected by the Mars Odyssey spacecraft.
We observed good performance from both an existing ABFT
method for matrix multiplication and a novel ABFT method for
exponentiation. These techniques bring us a step closer to “rad-
hard” machine learning algorithms.

I. INTRODUCTION AND OBJECTIVES

Onboard data analysis is a powerful capability now being
adopted for current and future spacecraft missions. Rather
than functioning as remote data collectors that simply stream
information back to Earth for interpretation, spacecraft can
now determine the relative priorities of different observations
or generate compact summaries of large data sets, thereby
maximizing the use of limited bandwidth. They can even
detect and respond to short-lived events (e.g., dust devils [1])
that would otherwise be noticed only after they ended, if at
all.

However, one of the major challenges to increasing the
computational responsibility of a spacecraft is the radiation
environment in which it operates. Bit errors in memory and
altered computational results can all affect the output of
an onboard analysis system, potentially resulting in the loss
of data or a missed detection. Much work has gone into
developing radiation-hardened processors and memory as well
as software-based strategies for detecting and recovering from
such errors. A common hardware technique for achieving
radiation protection for SRAM is Triple-Modular Redundancy
(TMR), in which three identical components perform the same
memory operations and then vote on the result [2]. Software-
based strategies include error detection and correction (EDAC)
codes, which employ a “memory scrubber” process to run
continually in the background to correct errors [3], and

algorithm-specific tests to detect when an error has occurred
(e.g., [4], [5]). Most of the latter has focused on general
purpose computing.

In this work, we combine software-based error detection
with onboard data analysis algorithms. We focus on the
detection of computational errors caused by radiation-induced
errors in onboard memory. Our first contribution is a software
radiation simulator (BITFLIPS) that permits the specification
of the radiation-induced bit error rate as well as precise
control over which parts of memory are exposed. Second,
we have adapted software-based error detection methods for
use by support vector machines (SVMs), one of the the
most widely used machine learning methods today. We also
propose a new checksum-based strategy for detecting errors
during exponentiation, needed by SVMs to construct nonlinear
models. Finally, we tested these methods on data collected by
the Mars Odyssey spacecraft.

II. RADIATION SIMULATION: BITFLIPS

While radiation can cause errors both in spacecraft memory
and in the processor, we focus on modeling and protecting
against the former. The CPU is such a critical component to
the entire spacecraft, not just the data analysis system, that it
is likely to be radiation-hardened for the foreseeable future.
However, spacecraft memory could potentially tolerate less
hardening, if the software itself can detect and compensate for
errors. The use of less-hardened memory components could
greatly decrease the cost and increase the capability of a
mission. Therefore, this seems the most realistic and profitable
arena in which to advance onboard error detection. Further,
even radiation-hardened memory experiences the occasional
error, so the ability to detect and recover from those errors is
useful even with more reliable components.

Radiation can cause a variety of errors in memory, include
flipped bits, stuck bits, and damaged components. Little can
be done in the latter two cases, but flipped bits (single-event
upsets or SEUs) are transient effects for which recomputation
can be a reasonable solution.

We designed and implemented a lightweight SEU software
simulator, BITFLIPS (Basic Instrumentation Tool for Fault
Localized Injection of Probabilistic SEUs), that is built on the
Valgrind debugger/profiler [6]. BITFLIPS injects errors in a
reproducible fashion and, for programs written in C, permits
the specification of the SEU rate as well as which program

variables to expose and when. We used BITFLIPS to test the
performance of our error detection algorithms at a wide range
of error injection rates, using receiver operating characteristic
(ROC) curves to determine the trade-offs between detection
and false alarm rates at various detection thresholds.

The open source Valgrind debugging and profiling tool
provides an ideal foundation for BITFLIPS. Valgrind simulates
a CPU in software and provides a modular architecture for
creating tools that hook into its simulation environment. Val-
grind’s stock tool suite contains a memory leak detector, CPU
cache profiler, program caller-callee inspector, system heap
profiler, and a thread synchronization debugger. BITFLIPS is
patterned after Valgrind’s memory leak detector, but instead
of monitoring memory usage, BITFLIPS injects SEUs into
memory during program execution.

BITFLIPS relies on Valgrind’s on-the-fly program instru-
mentation capability to inject SEUs. To simplify instrumen-
tation, Valgrind translates a program’s processor specific in-
structions into VEX IR, a Reduced Instruction Set Computing
(RISC)-like Intermediate Representation (IR) language. RISC-
like instructions eliminate the need for plugin tools like
BITFLIPS to contain specialized program logic tailored to
complicated, possibly processor-specific instructions. Instead
tools analyze and operate on basic load, store, arithmetic, com-
parison, and branch operations. The Valgrind simulator, and by
extension, BITFLIPS, operates in an instrument-execute loop.

The instrumentation process begins when Valgrind translates
the first (or next) block of a program’s processor specific
instructions into VEX IR. Next, Valgrind passes its VEX IR
block to BITFLIPS for analysis and instrumentation. BIT-
FLIPS then interleaves a special C-callback VEX IR instruc-
tion between each of the program’s VEX IR instructions in
the block. The callback instruction, when executed, results in
a call to a BITFLIPS C function, BF_doFaultCheck(),
which is responsible for deciding when and where to inject
SEUs. The BF_doFaultCheck() function delegates to
BF_doFlipBits() when appropriate to perform the actual
SEU operation. When BITFLIPS finishes its instrumentation,
the VEX IR block is passed back to Valgrind. Finally, Valgrind
executes the instrumented instruction block. This process
repeats until there are no more program instructions left to
execute.

The rate at which BITFLIPS injects SEUs is governed by
a radiation flux parameter which is fixed at the time of initial
program execution. The units of this parameter are SEUs per
kilobyte per second. We use kilobytes as a proxy for physical
memory area; the larger the area, the more memory is exposed
to radiation. The SEU density (number of bits flipped per
SEU) is determined by a discrete Poisson distribution. Sixty
percent of BITFLIPS’ SEUs affect a single bit. Thirty percent
of BITFLIPS’ SEUs affect two bits, and so on. An upset
affecting seven bits is exceedingly rare and accounts for only
one percent of SEUs injected.

For both precise experimental control and improved re-
porting, BITFLIPS allows the specification of which program
variables to expose to radiation. There are two requirements

for this capability: 1) the program must be written in C and
2) the program source code must be accessible for compila-
tion. Exposing (or shielding) individual variables is achieved
through a Valgrind feature known as Client Request Macros
(CRMs). Valgrind CRMs are C preprocessor macros whose
substituted code results in a series of register bit shifts. When
a program is run under Valgrind, these register operations are
detected by the Valgrind simulator and mapped to C callbacks
in BITFLIPS. When a program is run in its native environment
(i.e., outside of the Valgrind simulator), the register operations
are effectively no-ops, and they do not affect the operation
of the program. Moreover, the run-time overhead imposed by
CRMs on native programs is negligible: six simple integer
instructions. BITFLIPS CRMs also communicate to BITFLIPS
the C type (e.g., char, int, float, double, etc.) and
layout (for row- or column-major matrices) of the exposed
program variables. BITFLIPS uses this information, in its
verbose output mode, to report variable values before and after
an SEU, as well as the difference between them, so that the
magnitude of the SEU’s impact can be quantified.

The BITFLIPS CRMs are as follows:
• VALGRIND_BITFLIPS_ON() Enables SEU injection.
• VALGRIND_BITFLIPS_OFF() Disables SEU injec-

tion.
• VALGRIND_BITFLIPS_MEM_ON(addr, nrows,
ncols, type, order) Exposes a block of memory
beginning at address addr to SEUs. The memory block
has nrows rows and ncols columns. The C type of the
block (e.g. char, int, float, double, etc.) and
matrix order (row- or column-major) give BITFLIPS
additional information to use when reporting variable
values before and after an SEU.

• VALGRIND_BITFLIPS_MEM_OFF(addr) Shields
the previously exposed block of memory beginning at
address addr from future SEUs.

III. RADIATION DETECTION

Our approach to detection of radiation-induced errors is
based around postcondition checks on numerical subroutines.
If the operation was carried out successfully, certain rela-
tions between the routines inputs and its computed outputs
should hold true; where they do not, an error is indicated.
For example, when performing the matrix inverse operation
B = A−1, we expect AB = I . Due to the limitations of
finite-precision arithmetic, most often postconditions will not
hold true exactly; consequently we test whether they are true
within some error bound.

In general, it is desirable for such postcondition checks to
consume considerably less computational resources than the
original computation. Otherwise, it would be more direct and
informative to simply repeat the computation and compare the
results. One way to avoid this sort of exhaustive check is to
employ a probe vector w. Consider a linear operation with
factorable inputs and outputs:

L1L2 · · ·Lp
?= R1R2 · · ·Rq. (1)

Since an error in one element will often fan out across the
result matrix as the computation progresses, we can use w to
compute checksum vectors that are compared instead:

L1L2 · · ·Lpw
?= R1R2 · · ·Rqw. (2)

This method, known as result-checking (RC), was used by
Freivalds [7] to check multiplication, and was analyzed in
a general context by Blum and Kannan [8]. This idea is
also the basis of the checksum augmentation approach of
Huang and Abraham [4] under the name algorithm-based fault
tolerance (ABFT) (for a comparison of RC and ABFT, see
[9]). Both approaches have since been extended by a number
of authors to various linear decompositions [10]–[12], the
FFT [13], [14], and other numerical operations. Boley et.
al. [15], [16] explored fault location and correction using
this method, as well as the use of multiple probe vectors.
The effects of multiple faults, including those that occur
during the postcondition test itself, have been explored through
experiment [17]. Previous work has also explored the setting
of error bounds for checksum tests [5], [11], [18].

In this work, we have applied this sort of algorithm-based
fault tolerance approach to support vector machines (SVMs),
one of the most widely used machine learning methods
today. SVMs are currently in use onboard the EO-1 (Earth
Observing 1) spacecraft to perform pixel-level classification
of hyperspectral images [19] and can also be used to perform
regression, such as estimating the dust and water ice content
of the Martian atmosphere [20].

A. Support Vector Machines
Support vector machines [21] infer a hyperplane to separate

labeled training data into two distinct classes. The hyperplane
can then be used to classify new items. Arbitrarily complex
decision boundaries (not just linear ones) can be created by
mapping the input data via a kernel function into a higher-
dimensional space in which the hyperplane is constructed.
SVMs have also been extended to apply to regression prob-
lems [22], in which the goal is to estimate a real-valued
quantity rather than assigning a discrete class to a new item.

Given a data set of n items X = {x1, . . . , xn}, where each
xi ∈ Rd is a d-dimensional feature vector, and a vector y such
that yi ∈ {+1,−1} is the label for xi, an SVM is defined by
n + 1 parameters: a weight αi for each xi and a bias term, b.
Each xi with a non-zero weight αi is termed a support vector,
and it is only these items that influence the classification of
new data. New items are classified as follows:

f(x) = sign(
n∑

i=1

αiyi(x · xi) + b). (3)

Let s be the number of support vectors, which we will refer
to as zj instead of xi, obtaining:

f(x) = sign(
s∑

j=1

αjyj(x · zj) + b), (4)

If the two classes are not linearly separable, the dot product
(x · zj) can be replaced by a kernel function K(x, zj), which

is equivalent to using some mapping φ(x) to transform each
x (and z) into a feature space with more (possibly infinite)
dimensions and computing the dot products there. After adding
the kernel function, the SVM decision function becomes:

f(x) = sign(
s∑

j=1

αjyjK(x, zj) + b). (5)

Common choices for kernel functions are polynomials and
Gaussian radial basis functions. The Gaussian kernel is defined
as

KG(x, zj) = e−
1
γ ‖x−zj‖2 , (6)

where γ = 2σ2 and σ is the width of the kernel, or the standard
deviation of values.

To train the SVM, we must compute values for α and b,
which are usually obtained by solving the following quadratic
programming problem:

minimize: 1
2

∑
i,j αiαjyiyjK(xi, xj)−

∑
i αi

subject to: 0 ≤ αi ≤ C,
∑

i αiyi = 0,

where C is a regularization parameter.
A similar derivation is obtained when using SVMs for

regression, with the addition of a tolerance parameter ε, which
specifies how tightly the learned model’s predictions must fit to
the true y labels in the training data. In addition, each support
vector zj has two Lagrange multipliers, αj and α∗j .

f(x) =
s∑

j=1

(αj − α∗j)K(x, zj) + b. (7)

B. Algorithm-Based Fault Tolerance

To create an error-detecting SVM, we focused on the
subroutines in which most of the computational time is spent.
The classification of new data requires the calculation of
the kernel values and then the computation of f(x) using
Equation 5 (classification) or 7 (regression). To classify m
new items, the kernel computations require a matrix-matrix
multiplication, and f(xi)∀xi amounts to a matrix-vector mul-
tiplication. Therefore, the kernel computation dominates the
computational effort and that is where we invest our efforts in
adding error detection abilities.

The two subroutines needed to calculate the kernel values
are matrix multiplication and exponentiation (for Gaussian
kernels). Each subroutine has a testable postcondition and is
thus amenable to the ABFT approach.

1) Matrix Multiplication: Given a linear kernel, all of the
kernel values can be computed via matrix multiplication:

K = XZ (8)

where K is the kernel matrix, X ∈ Rm×d is the matrix of
data to be classified, and Z ∈ Rd×s is the matrix of support
vectors (s ≤ n). Note that if X is the training data set, then
m = n, but more generally m can be any size for a new
data set. We replace all calls to K(xi, zj) with Ki,j . Since
the SVM relies on this matrix being accurately computed, any

errors that occur in the creation of K may result in errors in
the SVM output (classification or regression).

Our goal is to determine whether or not an error occurred
during the computation of K from X and Z. We need to apply
a test to determine whether K = XZ but more cheaply than
doing a complete recomputation of the matrix multiplication.
Therefore, let ŵ = Zw for some arbitrary vector w ∈ Rs×1 (in
our tests, we used a w vector of all ones). Then by substitution,
Kw = XZw = Xŵ. To determine whether K is correct, we
simply compare Xŵ to Kw, checking m values rather than
all m× s values in K. We define the relative error size ε as
the maximum difference between these values:

ε =
1
C
‖Kw −Xŵ‖∞ (9)

subject to a normalization factor C = ‖w‖∞‖X‖∞‖Z‖∞
that compensates for potential large variations in the values
of the input matrices. Xŵ is computed prior to the matrix
multiplication, and Kw is computed afterwards. If ε exceeds a
pre-specified tolerance, then an error is flagged. This process
requires two matrix-vector multiplications, which is cheaper
than recomputing all mn entries of K to use a voting or
consensus strategy to detect errors.

2) Exponentiation (Gaussian Kernel): Computing the ker-
nel matrix via matrix multiplication is sufficient for linear ker-
nels. However, for Gaussian kernels, an additional operation
is needed. First, we compute the linear kernel K lin = XZ as
above. Then we update the kernel values as follows:

Krbf
ij = e−

1
γ ‖xi‖2−2Klin

ij +‖zj‖2 (10)

We are concerned with whether an error occurs during the
computation of the exponential value. To do this, we utilize
a postcondition that compares the exponentiation of the sum
of input values to the product of their exponentiations. Let T
be a matrix with elements tij = − 1

γ ‖xi‖2 − 2K lin
ij + ‖zj‖2,

so Krbf
ij = etij . Then the checksum we calculate for column

j of the kernel matrix before performing the individual expo-
nentiations is

cj = e
∑

i
tij . (11)

We then compute Kij = etij as usual. Afterwards, we
compute the second checksum:

ĉj =
∏

i

Krbf
ij . (12)

If no error has occurred, then cj = ĉj ,∀j. Our error is then
the maximum relative error between the checksum elements:

ε = max
j

|cj − ĉj |
min(cj , ĉj)

. (13)

As with the matrix multiplication, if ε exceeds a pre-specified
tolerance, then an error is flagged.

Where m is large there is significant potential for numerical
underflow for this procedure. Underflow can be addressed in
a computationally efficient way by augmenting the checksum
vectors with buffer vectors b and b̂. Terms that would cause
underflow are added to (multiplied with) the buffer vector

instead, so that for sets Kc ⊂ {1, . . . ,m} and Kb =
{1, . . . ,m}\Kc,

cj = e

∑
k∈Kc

tkj , (14)

bj = e

∑
k∈Kb

tkj
, (15)

ĉj =
∏

k∈Kc

Krbf
kj , (16)

b̂j =
∏

h∈Kb

Krbf
hj . (17)

The error is then

ε = max
j

|cj/b̂j − ĉj/bj |
min(cj/b̂j , ĉj/bj)

. (18)

This approach will eliminate underflow problems as long as
2 log µ <

∑
i tij , where µ is the smallest machine repre-

sentable floating point number. In truly problematic cases,
where this condition does not hold, we are forced to take
a more computationally expensive approach to eliminating
underflow. Here we replace Equations 11 and 12 with

cj = e
1
m

∑
i
tij (19)

and
ĉj =

∏
i

(Krbf
ij)1/m. (20)

Normalizing the sum by m, the number of items being ana-
lyzed by the SVM, guarantees that the calculation will avoid
underflow as long as no individual kernel element induces
underflow (i.e., emini,j(tij) > µ). However, it does so at the
cost of a large number of computationally expensive power
operations.

IV. EXPERIMENTAL RESULTS

A. Data Sets

We evaluated the ABFT error detection methods on both
classification and regression tasks. The classification task
comes from the “letter” classification data set provided by the
UCI machine learning repository [23]. We used data for the
letters A and B to generate a binary classification problem.
Each letter was originally recorded as a rectangular matrix
of black and white pixels, then converted into 16 numerical
attributes that capture statistical information about the shape of
the letter. We trained models on 100 randomly selected items
from the full data set and tested on multiple disjoint sets of 100
randomly selected items. For this data set, we used a Gaussian
kernel (γ = 0.05) and a regularization factor C value of 0.8.
These hyperparameters were selected after a cross-validation
search on held-out data.

The regression task uses spacecraft data and has been
previously identified as a useful onboard data analysis problem
in a high-radiation environment (Mars orbit). The data comes
from the THEMIS instrument on the Mars Odyssey spacecraft.
THEMIS is the Thermal EMission Imaging System, a camera
that records observations at visible (VIS) and infrared (IR)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

De
te

ct
io

n
Ra

te

Matrix mult.
Exponentiation

(a) Letter Classification (SEU rate: 5× 10−9)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

De
te

ct
io

n
Ra

te

Matrix mult.
Exponentiation

(b) Water Ice Regression (SEU rate: 5× 10−8 (MM) and 5× 10−9 (exp))

Fig. 1. Error detection results for both classification and regression tasks (100 trials).

wavelengths [24]. We previously developed onboard algo-
rithms for analyzing the IR data to detect thermal anomalies,
track the position of the polar cap edges, and estimate aerosol
(dust or water ice) content in the atmosphere [20]. That
evaluation assumed error-free computation. Here, we used the
water ice opacity estimation task, which relies on an SVM, as
the computation experiencing radiation.

The IR data consists of 8 distinct wavelength bands, with a
spatial resolution of 100 meters per pixel. Each image is 320
pixels (32 km) wide and a variable number (3600 to 14352) of
pixels long, divided into 256-line “framelets”. Each item in the
data set represents a single framelet; the feature values are the
average pixel value for each wavelength, across the framelet,
and the label for item is the water ice content (opacity) of the
atmosphere observed in that pixel. The full data set contains
223,690 items. For each SVM we trained on this data, we used
a Gaussian kernel (γ = 0.1) with a C value of 50. Since this
is a regression problem, we must also specify the maximum
error tolerance for the training process (ε = 0.01).

B. Methodology

One aspect of this work that distinguishes it from previous
work is the incorporation of ABFT checksums to detect errors
caused by SEUs in memory, rather than processor faults.
We used the BITFLIPS radiation simulator to track all data
structures and inject SEUs at a specified rate. We selected SEU
injection rates that resulted in a substantial number of errors,
but also several error-free runs, so that we could evaluate both
detection and false alarm rates.

For both classification and regression, we conducted several
trials and measured error detection performance in terms of
detection rate

D =
TP

TP + FN
(21)

and false alarm rate

F =
FP

FP + TN
, (22)

where TP is the number of true positives, FP is the false pos-
itives, TN is the true negatives, and FN is the false negatives.
We varied the detection threshold to which ε is compared, to
determine whether an error occurred, and obtained a range of
performance values.

We focused on detecting end-result errors in the output of
the SVM, rather than detecting each time an SEU occurred.
That is, to determine whether an error had occurred (and there-
fore should have been detected), we compared the output of the
SVM that was obtained when running without SEUs injected
to that obtained when SEUs were injected. If they were the
same, no error occurred. Note that there may still have been
SEUs happening, but the SVM’s natural tolerance for a low
level of radiation prevented an error from occurring in the
output. If detecting an error triggers rollback or recomputation,
it is appropriate that this should only be done if the SEUs had
an impact on the analysis result.

For both classification and regression, we first generated
100 distinct SVMs, each trained on a different subset of 100
items. We then tested each model on a disjoint set of 100
test items, running it multiple times with and without SEUs
injected. When SEUs were being injected, we exposed the X ,
Z, and K matrices.

C. Results

Figure 1 shows the results for both classification and regres-
sion. The radiation rate used to evaluate error detection on the
classification task was 5.0×10−9 SEUs per kB per second. For
comparison, commercial SRAM in low-Earth orbit experiences
about 1.2×10−7 SEUs per kB per second; radiation-hardened
SRAM experiences up to 1.2×10−12. Therefore, this rate not

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n
R

at
e

1.0e−8
8.0e−9
6.0e−9
4.0e−9

(a) Matrix multiplication

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n
R

at
e

5.0e−9
3.0e−9
1.0e−9

(b) Exponentiation

Fig. 2. Error detection results with different specified error rates, for the letter classification task (100 trials).

only provides a good mixture of erroneous and error-free runs,
but it also represents a realistic test environment. At this rate,
we observed that 42 of 100 matrix multiplication trials, and
81 of 100 exponentiation trials, produced erroneous output.
Note that all trials experienced SEUs, but not all of the SEUs
caused the final output to contain errors.

For SVM classification, we observed similar performance
for the matrix multiplication and exponentiation subroutines at
low false alarm rates (e.g., achieving 70% detection with no
false alarms). However, the matrix multiplication subroutine
achieved 90% detection with a 58% false alarm rate, while
the exponentiation subroutine had a 90% false alarm rate at
that detection level.

Error detection during SVM regression provided similar
results for the matrix multiplication subroutine, but lower per-
formance for the exponentiation subroutine (Figure 1b). Here,
the SEU rate used for exponentiation was again 5.0 × 10−9

SEUs per kB per second, but a higher rate was needed to
obtain a sufficient number of erroneous trials for the matrix
multiplication step (5.0 × 10−8). The higher SEU rate was
needed because this data set has only 8 features, compared
with 16 features for the letter classification data set, so the
X and Z matrices being multiplied were each only half as
large. Given these rates, we observed 27 of 100 and 21 of 100
trials with erroneous output for the matrix multiplication and
exponentiation subroutines, respectively.

Figure 2 shows detection results obtained when different
SEU rates were specified for letter classification. For both
matrix multiplication and exponentiation, we generally found
better detection results in the presence of more radiation as
compared with lower rates. This was especially pronounced at
lower false alarm rates. For example, when performing matrix
multiplication with an SEU rate of 1.0× 10−8, 85% of errors
were detected with no false alarms, and 90% detection was

achieved with only 53% false alarms. This is likely because
although we seek only to detect whether at least one error
occurred, at higher SEU rates multiple errors could strike,
increasing the likelihood that at least one causes the error
size ε to exceed the detection threshold. Increased detection at
higher radiation rates is a useful attribute for onboard analysis
systems.

The careful reader may notice that the rates tested with
the exponentiation subroutine do not go as high as those
used for matrix multiplication. The reason for this is that the
exponentiation takes longer to compute, and therefore at the
same rate experiences a larger number of SEUs. For rates
greater than 5.0 × 10−9, all 100 of the trials experienced
errors and therefore did not provide the necessary mixture of
erroneous and error-free trials to generate an ROC curve.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have described how algorithm-based fault
tolerance (ABFT) methods can used in the context of onboard
data analysis methods to increase their robustness in the
presence of radiation-induced errors. We focused on errors
that occur in memory (single-event upsets or SEUs) and later
affect the analysis results provided by support vector machines
(SVMs), a technology now being adopted for use onboard
spacecraft both for classification and regression.

We also described BITFLIPS, a lightweight software radi-
ation simulator that we developed. It provides precise control
over both the simulated SEU injection rate as well as which
elements of memory are exposed to the radiation. We believe
this work to be the first effort to combine ABFT methods with
SVMs and the first to test their combined capabilities in such
a simulator.

The techniques we proposed for detecting errors caused by
SEUs rely on the computation of checksum values before
and after executing a critical calculation, such as matrix

multiplication or exponentiation for a Gaussian (RBF) kernel.
Errors are detected when the difference between the expected
and actual checksums differ by more than a threshold amount.

Our results indicate that onboard data analysis methods
can successfully detect radiation-induced errors that strike
during the critical matrix multiplication and exponentiation
steps needed to compute the kernel matrix for a support
vector machine. Interestingly, detection improved at higher
SEU injection rates, as compared to lower rates.

Given the ability to detect errors, a clear next step is to add
a rollback-and-recompute capability. While these experiments
sought only to test the ability to determine whether any error
had occurred during computation, it would be even more
useful to identify which of the output values required recalcu-
lation. For matrix multiplication, the checksum is computed as
the max (infinity norm) over a vector of m values, one per item
being classified; (Kw −Xŵ) ∈ Rm×1. Identifying which of
these m items violates the error threshold provides guidance
in re-running the matrix multiplication, this time with only a
subset of X rather than the full matrix. This is much more
efficient than blindly recomputing K = XZ whenever any
error is detected. Likewise, the checksums cj and ĉj that are
used to compute the error size ε for exponentiation provide
a result for each input item xj , so they could be used to
selectively decide which Kij values must be recomputed via
Equation 10.

Ultimately, we aim to provide error-detecting and correcting
methods as a robust alternative to current onboard machine
learning and data analysis efforts.

ACKNOWLEDGMENTS

This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. c© 2009,
California Institute of Technology.

REFERENCES

[1] A. Castano, A. Fukunaga, J. Biesiadecki, L. Neakrase, P. Whelley,
R. Greeley, M. Lemmon, R. Castano, and S. Chien, “Autonomous
detection of dust devils and clouds on Mars,” in Proceedings of the
IEEE International Conference on Image Processing, 2006, pp. 2765–
2768.

[2] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM Journal, pp. 200–209, 1962.

[3] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-
implemented EDAC protection against SEUs,” IEEE Transactions on
Reliability, vol. 49, no. 3, pp. 273–284, 2000.

[4] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. 33, no. 6, pp. 518–528,
1984.

[5] M. Turmon, R. Granat, D. Katz, and J. Lou, “Tests and tolerances for
high-performance software-implemented fault detection,” IEEE Trans-
actions on Computers, vol. 52, no. 5, pp. 579–591, May 2003.

[6] N. Netercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of ACM SIGPLAN
2007 Conference on Programming Language Design and Implementa-
tion, June 2007, pp. 89–100.

[7] R. Freivalds, “Fast probabilistic algorithms,” in Proc. 8th Symp. Math-
emat. Foundat. Comput. Sci., 1979, pp. 57–69, also in Lecture Notes in
Computer Science, vol. 74, Springer.

[8] M. Blum and S. Kannan, “Designing programs that check their work,”
in Proc. 21st Symp. Theor. Comput., 1989, pp. 86–97.

[9] P. Prata and J. G. Silva, “Algorithm-based fault tolerance versus result-
checking for matrix computations,” in Proc. FTCS-29, 1999, pp. 4–11.

[10] J.-Y. Jou and J. A. Abraham, “Fault-tolerant matrix arithmetic and signal
processing on highly concurrent computing structures,” Proc. IEEE,
vol. 74, no. 5, pp. 732–741, 1986.

[11] F. T. Luk and H. Park, “An analysis of algorithm-based fault tolerance
techniques,” J. Parallel and Dist. Comput., vol. 5, pp. 172–184, 1988.

[12] M. P. Connolly and P. Fitzpatrick, “Fault-tolerant QRD recursive least
squares,” IEE Proc. Comput. Digit. Tech., vol. 143, no. 2, pp. 137–144,
1996.

[13] Y.-H. Choi and M. Malek, “A fault-tolerant FFT processor,” IEEE Trans.
Comput., vol. 37, no. 5, pp. 617–621, 1988.

[14] S. J. Wang and N. K. Jha, “Algorithm-based fault tolerance for FFT
networks,” IEEE Trans. Comput., vol. 43, no. 7, pp. 849–854, 1994.

[15] D. L. Boley, R. P. Brent, G. H. Golub, and F. T. Luk, “Algorithmic
fault tolerance using the Lanczos method,” SIAM J. Matrix Anal. Appl.,
vol. 13, no. 1, pp. 312–332, 1992.

[16] D. L. Boley and F. T. Luk, “A well-conditioned checksum scheme for
algorithmic fault tolerance,” Integration, The VLSI Journal, vol. 12, pp.
21–32, 1991.

[17] J. G. Silva, P. Prata, M. Rela, and H. Madeira, “Practical issues in the
use of ABFT and a new failure model,” in Proc. FTCS-28, 1998, pp.
26–35.

[18] D. Boley, G. H. Golub, S. Makar, N. Saxena, and E. J. McCluskey,
“Floating point fault tolerance with backward error assertions,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 302–311, 1995.

[19] R. Castano, D. Mazzoni, N. Tang, T. Doggett, S. Chien, R. Greeley,
B. Cichy, and A. Davies, “Learning classifiers for science event detection
in remote sensing imagery,” in Proceedings of the 8th International
Symposium on Artificial Intelligence, Robotics, and Automation in
Space, 2005.

[20] R. Castano, K. L. Wagstaff, S. Chien, T. M. Stough, and B. Tang,
“On-board analysis of uncalibrated data for a spacecraft at Mars,” in
Proceedings of the Thirteenth International Conference on Knowledge
Discovery and Data Mining, 2007, pp. 922–930.

[21] C. Cortes and V. Vapnik, “Support-vector network,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[22] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Sup-
port vector regression machines,” in Advances in Neural Information
Processing Systems 9. MIT Press, 1997, pp. 155–161.

[23] A. Asuncion and D. Newman, “UCI machine learning repository,”
http://www.ics.uci.edu/ mlearn/MLRepository.html, 2007.

[24] P. R. Christensen et al., “Morphology and composition of the surface
of Mars: Mars Odyssey THEMIS results,” Science, vol. 300, pp. 2056–
2061, June 2003.

